首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1464篇
  免费   187篇
  国内免费   90篇
化学   1690篇
晶体学   13篇
综合类   4篇
数学   4篇
物理学   30篇
  2024年   2篇
  2023年   18篇
  2022年   35篇
  2021年   117篇
  2020年   100篇
  2019年   71篇
  2018年   50篇
  2017年   57篇
  2016年   73篇
  2015年   77篇
  2014年   82篇
  2013年   146篇
  2012年   86篇
  2011年   70篇
  2010年   67篇
  2009年   91篇
  2008年   81篇
  2007年   71篇
  2006年   79篇
  2005年   78篇
  2004年   73篇
  2003年   69篇
  2002年   26篇
  2001年   15篇
  2000年   16篇
  1999年   14篇
  1998年   11篇
  1997年   6篇
  1996年   10篇
  1995年   15篇
  1994年   14篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1981年   1篇
排序方式: 共有1741条查询结果,搜索用时 15 毫秒
991.
Benzosuberene analogues (1 and 2) and dihydronaphthalene analogues (3 and 4) function as potent inhibitors of tubulin polymerization, demonstrate pronounced cytotoxicity (low nM to pM range) against human cancer cell lines, and are promising vascular disrupting agents (VDAs). As such, these compounds represent lead anticancer agents with potential translatability towards the clinic. Methodology previously established by us (and others) facilitated synthetic access to a variety of structural and functional group modifications necessary to explore structure activity relationship considerations directed towards the development of these (and related) molecules as potential therapeutic agents. During the course of these studies it became apparent that the availability of synthetic methodology to facilitate direct conversion of the phenolic-based compounds to their corresponding aniline congeners would be beneficial. Accordingly, modified synthetic routes toward these target phenols (benzosuberene 1 and dihydronaphthalene 3) were developed in order to improve scalability and overall yield [45-57% (1) and 32% (3)]. Moreover, benzosuberene-based phenolic analogue 1 and separately dihydronaphthalene-based phenolic analogue 3 were successfully converted into their corresponding aniline analogues 2 and 4 in good yield (>60% over three steps) using a palladium catalyzed amination reaction.  相似文献   
992.
An enantioselective synthesis of the previously-disclosed ITK inhibitor GNE-6688 is described. Synthesis of the nitropyrazole fragment is highlighted by a Ru-catalyzed transfer hydrogenation using the Wills tethered ligand system. Synthesis of the pyrazole carboxylic acid fragment features an allylboration catalyzed by a chiral diol-SnCl4 complex, followed by a highly diastereoselective directed cyclopropanation.  相似文献   
993.
Polymeric micelles are attractive nanocarriers for hydrophobic drug molecules such as the kinase inhibitor dactolisib. Two different poly(ethylene glycol)–poly(acrylic acid) (PEG‐b‐PAA) block‐copolymers are synthesized, PEG(5400)‐b‐PAA(2000) and PEG(10000)‐b‐PAA(3700), respectively. Polymeric micelles are formed by self‐assembly once dactolisib is conjugated via the ethylenediamine platinum(II) linker (Lx) to the PAA block of the block copolymers. Dactolisib micelles with dactolisib loading content of 17% w/w show good colloidal stability and display sustained release of Lx‐dactolisib over 96 h in PBS at 37 °C, while media containing reagents that compete for platinum coordination (e.g., glutathione (GSH) or dithiothreitol (DTT)) effectuate release of the parent inhibitor dactolisib at similar release rates. Dactolisib/lissamine‐loaded micelles are internalized by human breast adenocarcinoma cells (MCF‐7) in a dose and time‐dependent manner as demonstrated by confocal microscopy. Dactolisib‐loaded micelles inhibit the PI3K/mTOR signaling pathway at low concentrations (400 × 10?9 m ) and exhibit potent cytotoxicity against MCF‐7 cells with IC50 values of 462 ± 46 and 755 ± 75 × 10?9 m for micelles with either short or longer PEG‐b‐PAA block lengths. In conclusion, dactolisib loaded PEG‐b‐PAA micelles are successfully prepared and hold potential for nanomedicine‐based tumor delivery of dactolisib.  相似文献   
994.
In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4?amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules. The r2 values for the training and test sets were 0.89 and 0.82, respectively. The Q2 values for leave-one-out cross-validation (LOO-CV) and leave-many-out cross-validation (LMO-CV) tests on the training set were 0.65 and 0.64, respectively. The CoMFA model was validated by calculating several statistical parameters. CoMFA contour maps were interpreted, and structural features that influence the CD38 inhibitory activity of molecules were determined. Finally, seven new CD38 inhibitors with greater activity with respect to the greatest active molecules were designed.  相似文献   
995.
Upregulation of store-operated Ca2+ influx via ORAI1, an integral component of the CRAC channel, is responsible for abnormal cytokine release in active rheumatoid arthritis, and therefore ORAI1 has been proposed as an attractive molecular target. In this study, we attempted to predict the mechanical insights of ORAI1 inhibitors through pharmacophore modelling, 3D-QSAR, molecular docking and free energy analysis. Various hypotheses of pharmacophores were generated and from that, a pharmacophore hypothesis with two hydrogen bond acceptors, one hydrogen bond donor and two aromatic rings (AADRR) resulted in a statistically significant 3D-QSAR model (r2 = 0.84 and q2 = 0.74). We believe that the obtained statistical model is a reliable QSAR model for the diverse dataset of inhibitors against the IL-2 production assay. The visualization of contours in active and inactive compounds generated from the 3D-QSAR models and molecular docking studies revealed major interaction with GLN108, HIS113 and ASP114, and interestingly, these residues are located near the Ca2+ selectivity filter region. Free energy binding analysis revealed that Coulomb energy, van der Waals energy and non-polar solvation terms are more favourable for ligand binding. Thus, the present study provides the physical and chemical requirements for the development of novel ORAI1 inhibitors with improved biological activity.  相似文献   
996.
Regulation of protein activity is essential for revealing the molecular mechanisms of biological processes. DNA and RNA achieve many uniquely efficient functions, such as genetic expression and regulation. The chemical capability to synthesize artificial nucleotides can expand the chemical space of nucleic acid libraries and further increase the functional diversity of nucleic acids. Herein, a versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of aptamers able to regulate protein activity. Specifically, an aptamer that targets integrin alpha3 was identified and this aptamer can inhibit cell adhesion and migration. Overall, this chemical‐design‐assisted in vitro selection approach enables the generation of functional nucleic acids for elucidating the molecular basis of biological activities and uncovering a novel basis for the rational design of new protein‐inhibitor pharmaceuticals.  相似文献   
997.
998.
Epigenetics is currently the focus of intense research interest across a broad range of disciplines due to its importance in a multitude of biological processes and disease states. Epigenetic functions result partly from modification of the nucleobases in DNA and RNA, and/or post‐translational modifications of histone proteins. These modifications are dynamic, with cellular machinery identified to modulate and interpret the marks. Our focus is on bromodomains, which bind to acetylated lysine residues. Progress in the study of bromodomains, and the development of bromodomain ligands, has been rapid. These advances have been underpinned by many disciplines, but chemistry and chemical biology have undoubtedly played a significant role. Herein, we review the key chemistry and chemical biology approaches that have furthered our study of bromodomains, enabled the development of bromodomain ligands, and played a critical role in the validation of bromodomains as therapeutic targets.  相似文献   
999.
The proteolytic complex ClpXP is fundamental to bacterial homeostasis and pathogenesis. Because of its conformational flexibility, the development of potent ClpXP inhibitors is challenging, and novel tools to decipher its intricate regulation are urgently needed. Herein, we present amino acid based phenyl esters as molecular probes to study the activity and oligomerization of the ClpXP complex of S. aureus. Systematic screening of (R)‐ and (S)‐amino acids led to compounds showing potent inhibition, as well as stimulation of ClpXP‐mediated proteolysis. Substoichiometric binding of probes arrested ClpXP in an unprecedented heptamer–hexamer assembly, in which the two heptameric ClpP rings are dissociated from each other. At the same time, the affinity between ClpX and ClpP increased, leading to inhibition of both enzymes. This conformational arrest is beneficial for the consolidated shutdown of ClpXP, as well as for the study of the oligomeric state during its catalytic cycle.  相似文献   
1000.
A new strategy by converging ultrafiltration high‐performance liquid chromatography with ultraviolet and mass spectrometry and pH‐zone‐refining counter‐current chromatography was developed for the rapid screening and separation of potential acetylcholinesterase inhibitors from the crude alkaloidals extract of Zanthoxylum nitidum. An optimized two‐phase solvent system composed of chloroform/methanol/water (4:3:3, v/v) was used in this study. And, in the optimal solvent system, 45 mM hydrochloric acid was added to the aqueous stationary phase as the retainer, while 5 mM triethylamine was added to the organic mobile phase as the eluter. As a result, with the purity of over 95%, five alkaloids including jatrorrhizine ( 1 , 340 mg), columbamine ( 2 , 112 mg), skimmianine ( 3 , 154 mg), palmatine ( 4 , 226 mg), and epiberberine ( 5 , 132 mg) were successfully purified in one step from 3.0 g crude alkaloidals extract. And their structures were identified by ultraviolet, mass spectrometry, 1H and 13C NMR spectroscopy. Notably, compounds 2 , 4 and 5 were firstly reported in Z. nitidum. In addition, acetylcholinesterase inhibitory activities of compounds 1–5 were evaluated, and compounds 3, 4 and 5 exhibited stronger acetylcholinesterase inhibitory activity (IC50 values at 8.52 ± 0.64, 14.82 ± 1.21 and 3.12 ± 0.32 μg/mL, respectively) than berberine (IC50 value at 32.86 ± 2.14 μg/mL, positive control). The results indicated that the proposed method is an efficient technique to rapidly screen acetylcholinesterase inhibitors from complex samples, and could be served as a large‐scale preparative technique for separating ionizable active compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号